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Abstract 

We propose a nonparametric estimator for the rate of spread of an introduced population. We prove that the limit 
distribution of the estimator is normal or stable, depending on the behavior of the moment generating function. We show 
that resampling methods can also be used to approximate the distribution of the estimators. @ 2001 Elsevier Science B.V. 
All rights reserved 
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1. Introduction and results 

Ecologists use dispersal kernels to estimate the speed at which an introduced population might invade new 
environments. A kernel is fitted to the scatter of offspring locations about a parent, and this kernel is then used 
to calculate a velocity of spread. There is growing awareness that these estimates can be extremely sensitive 
to assumptions about kernel shape (Kot et al., 1996; Clark, 1998); differences in model forms that appear 
subtle (and fit data sets equally well), may imply large differences in velocity estimates. 

We demonstrate a method that sidesteps entirely assumptions concerning kernel shape by advancing directly 
from empirical dispersal data to an estimator for spread rate. 

A classical model for biological invasions is the integrodifference equation 
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where u,(x) is the density of invading organisms at location x E R and tirne s, Ro > 1 is the geometric growth 
rate of the population, G(u) describes nonlinear growth dynamics, and F is the distribution function of a 
random variable X describing the distance an individual disperses in one time step. Here it is assumed that 
RoG(u) has fixed points at u = 0 and u = 1, RoG(u) > u for 0 < u < 1, G'(0) = 1 and sup,,,,,, G(u)/u = 1. 
Thus, the maximum per capita geometric growth is Ra which occurs as the population density approaches 
0 (Weinberger, 1982). The asymptotic spread rate of the solutions arising from compact initial data can be 
calculated under the assumption that the moment generating function of A' 

3C 

M ( t )  = e" dF(x) 1, 
exists on some nonzero interval [O,to). Weinberger (1982) showed that under a wide variety of assumptions 
on reproduction and dispersal, the rate of spread of a locally introduced population asymptotically approaches 

co = inf Z(s) 
.v > 0 

as the tirne since the initial release becomes large. Here 

The function Z(t) is continuous and can be shown to have a unique critical point r which gives a global 
minimum for Z(t) and thus Zt(r)  = 0 and 

This was proved by Weinberger (1978) for density functions ,f = Ft with bounded support (see Lemma 4.1 
in Weinberger (1978) and its proof) and a straightforward extension of the proof includes the general case 
above (cf. Lemma 9.1 in Weinberger, 1982). 

Biological measurements of dispersal distances may be available without the knowledge of the underly- 
ing distribution function. We consider how to estimate co in this case. We assume that the observations 
X I , X 2 . .  . .,XI, are independent, identically distributed random variables with distribution function F. Since 
we cannot assume any parametric form for F (cf. the empirical example in Kot et al. (1996)) we use a 
nonparametric approach. We consider the estimation of M(t)  with the empirical moment generating hnction 

This suggests that 

can be used as a nonparametric estimator for Z(t) and thus, 

can be used as a nonparametric estimator for co, where 

We wish to note that the estimation of z and co fits into the general scheme of estimation based on Laplace 
transforms. Csorgo and Teugels (1990) introduced and investigated estimation of parameters using empirical 
Laplace transforms and used the general scheme in five different scenarios. 

Let to = sup{t > 0: M ( t )  < m) < m and assume throughout that to > 0. Our first result is the strong con- 
sistency of 2, and e,. 
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(1.6) will be false. In the next theorem we consider the case when to12 < T < to. Let <,, 1 < a < 2 be a 
stable random variable with index or. We say that the random variable Y is the domain of attraction of <,, i f  

with some slowly varying function L, where Yl ,  Y',. . . , Y,, are independent copies of Y. For the properties of 
slowly varying functions we refer to Bingham et al. (1987). 

Theorem 1.3. If (1.3) holds and Xexp(7X) is in the doinain of attr-oction of <, rtlirh some 1 < a < 2, tilen 
tlter-e is a slowlj: varying function Ll(n)  such that 

, I - I :zL , (l?)(?,, - 7) -2 iZ. . "  (1.9) 
If (1.1) also holds, then r1rei.e is u slobz.!): varying function L2(n) sucit tlzar 

We note that if X exp(.EXI) is in the domain of attraction of c,, then M(7r - E )  < XI and M(7r + E )  = 30 

for all 0 c E ( TC~.  

2. Bootstrap 

If we wish to use (1.8) to construct confidence intervals or for hypothesis testing we need the value of the 
asymptotic variance Y'. Since Y' is unknown we must estimate it from the random sample. If Y,, satisfies 

Iv" - V I  = op(l), 

then under the conditions of Theorem 1.2 we have that 

In the proof of (1.8) we show that 

,I !2(pn - co) = bo(r)n"'(~,,(z) - M(7)) + b l ( ~ ) n ' " ~ ( ~ , ; ( . r )  - M1(r)) + op(l ) ,  

where bo(r) and bl (T) are easily computable functions of M(r),  Mt ( r )  and M"(T), say bo(r) = bo(M(7), Mt(.r), 
Mt'(r)) and bl  (7) = bl(M(r),A4'(z), M"(7)). Hence, 

and therefore the "plug in" method (i.e. replacing all expected values by the corresponding averages) gives 

where 60 = bo(Mn(fn), M,'(fn), M,"(.f,)) and 61 = b~ ( ~ , ( i , ) ,  ML(fn ), M,"(&)). It is easy to see that v, of (2.3) 
satisfies (2.1 ). 



Lemma 3.1. For an!, 0 < T < to we have 

sup IM,,(t) - M(t)l -+ 0 a.s. 
O < / < T  

sup IMl:(t) - Mt(t)I -+ 0 as. 
O<r<T 

sup IM, : ' ( t ) -MU(t ) l  --+ 0 a.s. 
O < I < T  

Proof. Let 

and 
0 

~ ( " ( t )   EM:')(^) = en dF(x). 1% 
Proposition 1 of Csorgo and Teugels (1990) (cf. also Csorgo, 1980) yields that 

sup ( t )  - ~ ( t )  0 a.s. 
Ocr<T 

. . 
and 

sup IM;I~)(~) - ~ ( ~ ) ( t ) l  -+ 0 as .  
O B I S T  

which give (3.1). Similarly to (3.4), Proposition 1 of Csorgo and Teugels (1990) gives the strong uniform 
convergence of all derivatives of Mii'(t) and ~ ! * ) ( t )  and, therefore, (3.2) and (3.3) are also proven. 

Proof of Theorem 1.1. We have that 

Since 
1 

l imMn( t )= l  and limML(t)=- Xi, 
110 [lo n 

I < i < n  

we get that 

lim Z,!,(t) = -m. 
110 

By Lemma 3.1 we have that 

M'(t) sup -+ 

M'(t sup - as .  
~<r<cMn(t) O < I < E  M(t) 
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Lemma 3.2. W e  have tlza( 

and 

for unjJ 0 < t < to, ~t~kel-e 

< ~ ( f )  = cl(t)(exp(tX~) -M( t ) )  

and 

q,(O = ~l( t)(X,  exp(tk;) - MI([)) + c2(t)(exp(tX,) - M(t)). 

1 
t - ( t )  - - ql(t) 

n 
I < 1 < 1 1  

Proof. The mean-value theorem gives 

= OP(I )(MIIJO - ~ ( f ) ) ?  + )(Ml:(t) - ~ ' ( f ) ) '  

where p is a point between M,,(t) and M ( t ) .  Now (3.9) follows from Lemma 3.1 with the choice of c(t) = 

ll(tM(t)). 
Similar arguments give (3.10). The details are omitted. 

Lemma 3.3. If (1.1 ) holds, then 

If11 - 7 - (Zt(7) - z l ; (~ ) ) / z l l (~ ) l  = O P ( ~  )lZ1K7) - Z1(7)I 

and 

[in - c - {Z1,(7) - Z(7) - Z'(T)(Z];(T) - Z1(7))/Zt'(~)}l = op(l)lZl;(~) - Z'(T)~. 

Proof. Similarly to (3.7) we have 

sup I Z,:'(t) - Ztl(t) I -+ 0 a.s. 
s , < , , < T  

for any 0 < E < T c to/2. The mean value theorem gives 

ZA(fn) - ZA(7) = Z;(<)(fll - z), 

where ( is between ẑ ,, and z. By definition Z,!,(z ,̂) = 0, Zt(.c) = 0 and, therefore, 

Hence, (3.1 1 ) follows from (3.13). 
Next, we write 

Cln - co = Zn(tn) - Z(7) 

= Z"(z ,̂) - Zn(7) + Z1,(7) - Z(.c) 

= ZA(()(fn - 7) + Zn(7) - Z(r), 

where ( is between in and 7. Using (3.7) and (3. I 1 ) we obtain immediately (3.12). 
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Using again Theorem 7.7 in Durrett (199 1 ) we can find a slowly varying function K * ( n )  such that 

n - ' " ~ * ( n )  {exp(rX,) - M ( r ) }  3 5 , .  
l <;</I 

Comparing the tails in (3.17) and (3 .18)  we get from (3 .18)  that 

lim K ( n ) l K * ( n )  = 0 
1,-x 

and therefore the proof of (3.16)  is complete. E 

Proof of Theorem 2.1. Since we can follow the proof of Theorem 1.2 very closely we just give an outline 
Elementary arguments similar to those proving Lemma 3.1 give that conditionally on XI, 

sup IM,,, . l l(~) - Mll(f)l  -- 0 
O<r<T 

and 

sup I~/i,::,,(t) - M,:'c(t)J - 0 a.s. 
O<r<T 

as min(n2.n) -+ x. The consistency of i,,,.,, and t,,,.,, can be derived from (3 .19)  and (3.20) along the lines of 
the proof of Theorem 1.1. Using analogues of Lemmas 3.2 and 3.3 what we need is a central limit theorem 
(conditionally) for sums in the form of 

Since ~ ~ ' e x p ( 2 z X )  < x, the required central limit theorem follows from Bickel and Freedman (1981). 
Y' 
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